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Abstract

This article reports the examinations of a three body star orbit. These orbits are impossible to solve analytically and
require numerical methods for plotting the orbits of these stars. Precisely, python and a Forward Euler Difference Scheme
(Or F.E.D.S for short) was used to solve for these stars’ equations of motion. After these solutions were found, it was
observed that these three body orbits are primarily unstable with only specific initial conditions yielding stable orbits of
the three stars.

1 Introduction

As stated in the abstract, the purpose of this report is
to report the findings of the solutions for a three body or-
bit. To do this, the situation of a ball falling from some
designated height must be looked at first. One dimensional
gravitational attraction is the simplest form of gravity that
can be examined. This situation lays the groundwork for
the inevitable scenarios that follow in complexity. After the
one dimensional motion of a ball falling to the ground is
covered, the two body system will be covered. By two body
it is implied that there are only two bodies in space where
the only force acting on these bodies are the gravitational
attraction due to the other body. Once the two body system
is solved, the three body will be solved and plotted for as
well.

The studying of the three body problem dates all the way
back to 1499 when Amerigo Vespucci and Galileo Galilei first
attempted to solve for these equations of motion [2]. Unfor-
tunately, for both Amerigo and Galileo were naive and did
not know that their efforts were essentially being wasted.
Amerigo and Galileo were wasting their time because the
force equations that are derived for these bodies in space
have too many variables changing to be able to solve for
analytically. Since the position of these orbits are time de-
pendent, it should be expected that the velocity and accel-
eration are time dependent as well. But along with these
values being time dependent, these values are also position
dependent and thus makes it impossible to solve for ana-
lytically. And queue the twentieth and twenty-first century
scientists!

2 Force Equations

Before the equations of motion can be solved, we be-
gin with Newton’s second law. Isaac Newton’s second law
states, ’A body acted upon by a force moves in such a man-
ner that the time rate of change of momentum equals the
force.’ [1]. In mathematical terms Newton’s second law is

F⃗ =
dP⃗

dt
= m

dV⃗

dt
. (1)

Although Newton’s second law involves the change of mo-
mentum of an object, we are only concerned about when
the velocity is changing in the momentum. In essence, one
of the equations for force that we will be using is F⃗ = ma⃗,
which is the last part that can be seen in equation (1). It

should be noted that the letters with arrows on top i.e F⃗ ,
P⃗ , V⃗ all indicate vector quantities. Because of the vector
nature of force, an equivalent way to write equation (1) is

F⃗ = m(
dV⃗

dx
i⃗+

dV⃗

dy
j⃗ +

dV⃗

dz
k⃗) (2)

Knowing that force is a vector sum we can use the principle
of superposition and an equivalent way to write equation (1)
is

F⃗ =

3∑
i=1

dP⃗i

dt
= m

3∑
i=1

dV⃗i

dt
(3)

where (3) gives a final mathematical definition of Newton’s
second law. Equation (3) has the summation go from 1 to 3
due to there only being 3 spatial dimensions in our universe.
Space is of most interest in this project since star orbits are
being calculated. It is also important to define what the
force for gravitational attraction between two bodies is. The
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equation for force due to gravitational attraction is [1]

F⃗ = −GmM

r2
(n⃗) (4)

where G is the gravitational constant, M is the mass of the
larger body, m is the mass of the smaller body, r is the
separation between the two bodies of mass, and n⃗ is a unit
vector. Because force is a vector quantity, each individual
component of the force will have to be analyzed. The dis-
tance between two points in space r is r =

√
x2 + y2 + z2

which is abbreviated in equation (4) with just an r. The

unit vector n⃗ is n⃗ = x⃗i+yj⃗+zk⃗√
x2+y2+z2

when combined with the

distance between two points in space gives

F⃗ = −GmM

r3
(x⃗i+ yj⃗ + zk⃗). (5)

Equation (5) is used to solve for the equations of motion.
Equation (2) and (3) can be combined to yield three separate

individual force equations. One for each direction (⃗i, j⃗, k⃗).
For the x-direction the force equation becomes

m(
dV⃗

dx
)(⃗i) = −(

GmM

r3
)x(⃗i). (6)

The analog can be carried out to find the y and z-direction
force equations. The y-direction is thus

m(
dV⃗

dy
)(⃗j) = −(

GmM

r3
)y(⃗j) (7)

and the z-direction is finally

m(
dV⃗

dz
)(k⃗) = −(

GmM

r3
)z(k⃗). (8)

Equations (6), (7), and (8) will serve as the basis for finding
the equations of motion of these stars in orbit.

3 One-Dimensional Motion

Before the motion of three bodies can be solved, the sim-
plest scenario must first be examined and extended to the
initial problem. One simple example of a force attraction
between two bodies of mass is a ball falling towards the sur-
face of the Earth. Without accounting for drag, the time
that it takes for an object to fall back to the Earth’s surface
with no initial velocity is given by

t =

√
2h

g
, (9)

where h is the initial height near the surface of the Earth
and g is the acceleration due to gravity. A plot of h versus
t for this ball was calculated numerically with the use of
python. In general

mb
dV

dt
= − GMEmb

(RE + y)2
, (10)

was used to solve for the equation of motion of the ball being
dropped from a specific height. The ME and RE values are
the mass and radius of the Earth respectively. Where as the
mb variable is the mass of the ball that is being dropped.
The variable y in Equation (10) is the initial height that the
object (in this case, a ball) is being dropped from. Solving
Equation (10) with the initial conditions of y0 = 100 m and
Vy0 = 0 m

s yields the following plot seen in Figure 1 below.

Figure 1: Position vs. Time of Object Falling.

Figure 1 coincides with what should be observed with a ball
falling towards Earth. The rate of change in Figure 1 in-
creases with respect to time telling us that the velocity of
this object is increasing as it falls towards the Earth. The
acceleration is precisely g as this ball falls, which is what
should be observed.

4 Force Attraction Between Two
Bodies of Mass

One-dimensional gravitational force attraction has been
examined, the next topic of discussion is two bodies of mass
being attracted to one another. The scenario for this ex-
ample involves two massive bodies in space being attracted
towards one another from a certain distance apart.

Figure 2: Two Bodies In Space.

Figure 2 shows a sketch of what we are considering next.
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Newton’s second law holds and in space the force between
the two is gravitational. Using Newton’s second law and the
force due to gravity, the equations of motion for both object
1 and 2 can be solved. The acceleration for object 1 is thus

a1 = −Gm2

r2
, (11)

where the acceleration for object 2 can be written as

a2 = −Gm1

r2
. (12)

The motion of these objects are purely in one direction (It
can be interpreted as the x-direction) so the unit vector is
not necessary in Equations (11) and (12). It should be noted
that the only forces presumably acting on these bodies of
mass in space is the gravitational attraction due to the other
body of mass.
In the example of motion stated above in Figure 2, there

are two bodies in space that are separated by an arbitrary
distance apart from one another. There is a common point
in which these two bodies of mass will collide into one an-
other and this motion is the next item to be solved for. For
the purpose of simplicity, the masses M1 and M2 were set
to 50 kilograms and 100 kilograms respectively. The initial
separation distance between the two was 200 meters which
corresponds to the r value found in equation (5). The orig-
inal position of M1 was at X1i = −100m and M2 was at
X2i = 100m. Taking these parameters for both M1 and M2,
the original position of these two in space looks something
like this.

Figure 3: Initial Position of Two Bodies in Space.

It can be seen very faintly in Figure 3 the position of both
mass M1 and M2. It should be noted that after a time
interval the two would start attracting to one another until
the point of collision. Figure 4 shows the path of this motion.

Figure 4: Two Bodies Being Attracted to One Another.

Figure 4 shows the distance covered in the X-direction of
both of these masses. It should be noted that the green
line, M1, traverses a further distance in the same amount
of time as the blue line M2. This physically makes sense
since the acceleration that is due to M1 is contingent upon
the separation distance and M2 in the system. Therefore it
would make sense that M1 would cover more ground in the
same time due to its acceleration being greater than M2.
Conversely the reason why M2 traverses less than compared
to M1 is because its acceleration is less than that of M1’s
due to M1 having a smaller mass than M2.

5 Planetary and Celestial Body
Motion

A natural extension of gravitational attraction is orbital
motion. Since the main task is the plot the orbits of three
stars in space, understanding orbital motion is crucial. We
first review Kepler’s laws [1].

I. Planets move in elliptical orbits about the Sun with the Sun
at one focus.

II. The area per unit time swept out by a radius vector from the
Sun to a planet is constant.

III. The square of a planet’s period is proportional to the cube
of the major axis of the planet’s orbit.

The most important of these three laws to us is the first law
I. This law states that all planetary motion about one focus
should be in the shape of an ellipse. A perfect orbit in theory
would be a perfect circle, this is not the case most of the time
in space. For two body orbits the shape of the orbit should
also be ellipses. The previous force equations that were used
to solve for the equations of motion for two bodies in space
can be used to solve for orbital motion. Taking a look at
the inner planets, their orbits tend to be more circular than
the planets that are farther from the sun. Take for instance
the Earth’s orbit plotted below.
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Figure 5: One Orbital Period of Earth.

It can be observed that the orbit in Figure 5 is circular. This
shape of orbit is not that common for celestial bodies that
are farther from the sun. In fact, this shape of orbit is usu-
ally very similar for any scenario in which the orbit is very
large. As the orbit is traced out over time, Earth doesn’t
travel much farther away from the Sun while it doesn’t start
to get closer to the sun as well. Compared to another plan-
ets (or dwarf planets) orbit, say Pluto, Earth is circular in
its orbit.

Figure 6: One Orbital Period of Pluto.

From Figure 6, it can be seen that Pluto gets closer to the
sun than when it started its orbit as it traverses through it.
Once Pluto is at its closest point to the sun, it begins its
journey back to perihelion. This denotes an elliptical orbit,
which is exactly what Kepler’s first law states. Although
planetary orbits can be solved numerically, the ultimate goal
is to plot three-body orbits over time. These orbits are going
to be more complex than any two-body orbit. But before the
three-body system is examined, a ”chaotic” (A less common)
scenario in which the masses do not orbit each other will be
looked at next.

6 Chaotic Two-Body Motion

Consider a scenario in which a celestial body (Be it a
planet, star, asteroid, etc) is at rest in space. Consider an-
other celestial body that comes flying through space in the

general vicinity of the other body of mass. In this exam-
ple, the celestial body that is at rest in space has a mass of
M = 2.0 · 1028 kg were as the mass that is initially flying
away from the body at rest has a mass of m = 1.0 · 1022
kg. Comparatively, the body at rest is a star that is about a
thousand times smaller than our sun and the body of mass
that is flying by is a little smaller than Pluto. The smaller
mass is about one astronomical unit away from the bigger
mass moving away with a velocity of vx = 2000 (m/s) in
the x-direction and vy = 3500 (m/s) in the y-direction. The
following plot depicts the smaller body of mass’ trajectory
in about 4.1 years worth of time after the initial fly by.

Figure 7: Smaller Mass Flying By Bigger Mass.

Figure 7 is meant to serve as a visual representation of what
this mass’ trajectory would look like shortly after starting
its journey past the other massive body in space. It is shown
in the early on stages in the smaller mass’ trajectory that
it was trying to escape the gravitational attraction of the
larger mass. Over time it can also be seen that the mass is
starting to return to the large mass. Over time, it should
be observed that the smaller mass will orbit the larger one.
Figure 8 shows one full orbit for the smaller mass around
the larger mass. The time elapsed is roughly 127 years.

Figure 8: One Complete Orbit of Smaller Mass.

It should be noted that this orbit is eccentric, and is far from
being a circle. The purpose of Figures 7 and 8 is to emulate
a fly by of an unbound celestial body in space. Unbound
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bodies can be interpreted as flying freely through space and
not being bound to a body’s gravitational pull such that it
would orbit that body. At times when the smaller mass is
closer to the bigger mass, the velocity of the smaller mass
should be observed to be greater. Conversely, when the
smaller mass is very far away from the larger mass it is
moving at a slower rate in its orbit. Now let us consider one
last scenario for two body orbital dynamics.
Instead of the larger mass staying at rest, in this sce-

nario the larger mass is now moving away with a velocity
of vx = −300 m/s in the x-direction and vy = 75 m/s in
the y-direction. Let the smaller mass move at the same ve-
locities as previously stated and both masses start in their
original positions as before. Both the smaller and larger
mass are moving in the positive y-direction, but they are
moving apart in the x-direction. We will now examine how
this system evolves over time.

Figure 9: Bigger Mass Moving Away From Smaller Mass.

Figure 9 is similar to that of Figure 7 in that the initial
trajectories of both objects seem to be similar. Although
they have about the same shape as one another, they are
over different time intervals. The time span in Figure 9 is
about seven times longer than that of Figure 7’s, so it can
be noted that the movement of the larger mass has a direct
effect on the orbit of the smaller mass. Figure 10 shows the
trajectories of both masses over an even longer time interval.

Figure 10: One Semi Orbit Around Bigger Mass.

The time span of the orbit in Figure 10 is approximately
13 years longer than that of Figure 8’s time span. Note
the largest difference between the orbit in Figure 10 and
the orbit in Figure 8 is that the smaller mass is really not
orbiting the larger mass in the same way in Figure 10 as in
Figure 8. The smaller mass in Figure 10 is trailing along
with the larger mass as it moves throughout space. Where
as the smaller mass in Figure 8 is orbiting the larger mass
in a much more predictable sense. As time progresses and
this orbit is repeated, a pattern can be seen in the smaller
mass’ trajectory. Figure 11 shows exactly this.

Figure 11: Two Semi Orbits of Moving Larger Mass.

The term chaotic is really not the most appropriate way to
describe the motion of these bodies. Non predictable orbits
would be more of a consideration for chaotic motion. How-
ever, the motion of the bodies when both were moving just
didn’t look like a typical orbit. Figure 11 shows the period-
icity of the orbit as the smaller mass is about to complete
two orbits in the figure. It should be noted that in two body
systems most of the motion is periodic and predictable over
time. As time progresses, this orbit will repeat leading it
to be more stable than chaotic. In the event that a third
body came into the system, the system could eventually be
considered chaotic due to its unpredictable nature. This of
course gives a natural extension to our main focus of study.
Finally, the dynamics of three body orbits can be looked at.

7 Three-Body Orbital Dynamics

Unlike the two-body orbital dynamics scenarios, the equa-
tions of motion for the bodies in space are more difficult to
solve numerically. Instead of one body of mass only having
the gravitational attraction of another single body of mass,
one body of mass in a three-body orbital system will expe-
rience the force of gravity due to two other bodies of mass.
This difference will cause a noticeable change of equations of
motion for one body of this system. Before we examine the
plots, we will first look at the math behind the three-body
system orbit. We begin with clarifying notation that will be
used.
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F123 - The force on mass 1 due to masses 2 and 3.
F213 - The force on mass 2 due to masses 1 and 3.
F312 - The force on mass 3 due to masses 1 and 2.
r31 , r13 - The distance from mass 3 to mass 1.
r32 , r23 - The distance from mass 3 to mass 2.
r21 , r12 - The distance from mass 2 to mass 1.

It should be noted that this notation will be used for the rest
of the manuscript. It was previously stated that one body
in this system will feel the force of two bodies on it while
interacting in this system. Since this is true, the following
equations result. The force equations for all three bodies of
mass are;

M1a⃗1 = −GM1M2

r122
n⃗− GM1M3

r132
n⃗, (13)

M2a⃗2 = −GM2M1

r212
n⃗− GM2M3

r232
n⃗, (14)

M3a⃗3 = −GM3M1

r312
n⃗− GM3M2

r322
n⃗. (15)

Once the value for the unit vector in equations (13)-(15) is
substituted in, the equations of motion become difficult to
solve analytically. It should be noted that it is assumed that
these bodies of mass are not changing in mass thus the only
kind of change in momentum that can occur in this system
is an acceleration of one of the bodies of mass. Figure 12
illustrates the initial position of our three-body system.

Figure 12: A Configuration of Three Massive Bodies in Space
Interacting.

Examining configurations similar to Figure 12, the trajecto-
ries of the masses can be plotted with the use of Python and
numerical integration techniques. We first examine what
happens to three bodies of mass when the largest mass is
moving away from the two smaller masses.

Figure 13: Initial Location of Three Masses.

Figure 13 shows the starting points of these bodies of mass.
The configuration of these three bodies of mass was so that
they would form an equilateral triangle. The separation dis-
tance between the three bodies of mass is equidistant. The
two smaller masses (The black and green dots) are posi-
tioned one astronomical unit apart on the x-axis from the
origin in each direction (One at x = −1.0 AU and x = 1.0
AU). The units that appear in Figure 13 are in meters rather
than astronomical units. The biggest mass is positioned so
that it bisects the two smaller masses on the x-axis but is one
astronomical unit from the origin in the y-direction. Now
lets consider when the two smaller masses are at rest with
the larger mass also at rest.

Figure 14: The Accretion of Smaller Masses by a Larger Mass.

The masses in Figure 14 were configured so that the smaller
ones (The green and the black) were approximately the same
mass as Earth (mE ≈ 6.0 · 1024 Kg). The largest mass was
made so that it would be approximately the same mass as
the Sun (ms ≈ 2.0·1030 Kg). It should come with no surprise
that both of these masses are attracted towards the larger
mass, so strongly that they traverse in a straight line to the
larger mass. Figure 14 confirms what we should expect to
see happen. We next examine the evolution of the system
when the masses are initially at rest.

Let’s look at the same configuration of the masses that can
be seen in Figure 13. Instead of the smaller mass (M1) posi-
tioned at (−1.0 AU, 0) being at rest, it is moving initially at
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V0x = 30, 000 m
s in the positive x-direction. As for the other

smaller mass (M3) positioned at (1.0 AU, 0), it is moving
initially at V0y = 30, 000 m

s in the positive y-direction. With
the larger mass (M2) positioned at the same spot as before
and stationary, Figure 15 simulates the trajectories of the
planets.

Figure 15: Trajectories Over A Month.

Figure 15 shows that the two masses follow similar paths.
Considering both of these masses orbiting Mass 2 are the
same mass, we should expect to see similar trajectories over
time. Figure 16 shows the orbit of these two bodies over a
greater length of time.

Figure 16: Trajectories Over Three Months.

The orbits of masses 1 and 3 follow the same general shape
throughout. The orbits of these two planets are elliptic due
to the initial conditions of the planets. As time progresses,
the orbit seems to change in shape slightly where the planet
is not traversing the same exact path through each orbit.
This precision of the planets can be seen very easily over a
longer time span. Looking at the same scenario as in Figure
14 and 15, Figure 16 is generated over a three year time
span.

Figure 17: Precision of Planets Over Three Years.

We should expect to see this same pattern throughout time
assuming that no other large mass comes into the system to
interfere. If the planets were to come close to one another,
their orbits would change and this system would become
chaotic. Thankfully due to the initial conditions in this ex-
ample the orbits will not be interfered with.

Considering the previous scenario as in Figure 13 we will
now look at a dynamic system of these bodies of mass. The
first thing that will be different from the previous scenarios
are the masses of the celestial bodies in this system. The
two smaller masses in the system (M1 and M3) are now both
6.0 ·1026 Kg where as the biggest mass (M2) is now 2.0 ·1031
Kg. M1 and M3 are both set in motion at V0y = 30, 000 m

s
where as M2 is set in motion at V0y = −30, 000 m

s . With
these differences from before, the following plot is generated
of the three bodies and their trajectories.

Figure 18: Three Bodies in Motion.

As these bodies move through space, M2 originally attracts
both M1 and M3 due to its gravitational attraction. After
this initial attraction, the smaller masses are ’sling-shotted’
past the larger mass and continue onward in their trajec-
tories. The main reason for this trajectory is due to the
motion of the larger mass. Because of this, the trajectories
are different from those seen in Figures 15-17. With this
large body of mass, we now start to see more chaotic orbits
from the smaller masses. After approximately five months
in time, Figure 19 is generated for the three bodies and their
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trajectories.

Figure 19: Three Bodies in Motion.

After t = 5 months, the orbits become chaotic. The larger
mass can be seen to having a prominent effect on the smaller
masses but at certain points in the orbit the two smaller
masses influence each other. Examining this same system
we should expect to see chaotic behavior continuing as time
goes on. After one year, Figure 20 shows the plot of the
bodies and their trajectories.

Figure 20: Three Bodies in Motion Over One Year.

Figure 20 shows an absence of a pattern, thus leading the
orbit to be considered chaotic. The only mass that stays
constant is the huge mass that is only moving in the negative
y-direction. All of the plots found in Figures 13-20 involve
masses that have one with a substantially higher mass than
the other two. In systems where there are three bodies in
motion, it is evident that these orbits are not stable. This
is not true for all three body systems, but it is true for the
majority of the systems.
Now that the equidistant scenario has been covered, a dif-

ferent initial configuration of these three bodies in space will
now be examined. Much like Figure 2 and Figure 12, Figure
21 illustrates the force attraction of this new configuration
of masses.

Figure 21: Initial Configuration of Three Bodies in Space.

M1 and M3 are now 6.0 · 1029 Kg where M2 is 2.0 · 1031
Kg. Figure 22 depicts the initial positions of these bodies in
space as a plot. All of the masses are positioned such that
they are one astronomical unit away from one another.

Figure 22: Three Bodies Initially At Rest.

M1 in Figure 22 is set in motion with a velocity of V0y =
50, 000 m

s and M3 is moving at V0y = −50, 000 m
s . M2

is initially at rest and is only influenced due to the other
masses.

Figure 23: Three Bodies in Motion After 10 Years.

Figure 23 shows that the trajectories of the two masses
are different looking even though they are both of the same
mass in this 10 year time span. The motion that is seen of
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M2 is due to the gravitational attraction from M1 and M3.
The largest mass proceeds in a nonuniform trajectory much
like the smaller masses do when they are orbiting the larger
mass. M1 makes one revolution around M2 where as M3

is taking a longer time to do so. This could partly be due
to the initial direction of both masses and the proceeding
direction of M2. It is because of this non uniformity that
makes this system chaotic. The orbits are not predictable
like the planets in our solar system, they are sporadic with
no distinguishable pattern behind them. As we let this sys-
tem evolve, we see sporadic behavior that can’t be predicted.
Figure 24 shows the plot of the scenario in Figure 22 twenty
years after the initial start of the orbits.

Figure 24: Three Bodies in Motion After 20 Years.

Figure 24 shows the chaotic motion that is observed in three
body systems. The changing of position, velocity, and accel-
eration in these systems are what cause the chaotic behavior
that we observe in the plots. When there is a greater differ-
ence in mass in the system, as in Figures 13-20, the orbits
of the other bodies tend to be more planetary and can be
predicted with a lot more accuracy. This only changes when
the largest mass is set in motion as well.
There is one last scenario to examine for the three body

system. First the masses of of the bodies will be changed.
M1 and M2 are both now 2.0 · 1029 Kg and M3 is now 2.0 ·
1031 Kg. The purpose of these mass configurations are to
attempt to create a stable orbit in the system. The mass
of the largest body is only 100 times greater than that of
the smaller masses, compared to the mass ratio of about 3.3
million as seen in Figures 13-20. Taking the same initial
positions of the bodies in space as in Figure 22, M1 is set
in motion at 50, 000 m

s in the y-direction and the M3 at
50, 000 m

s in the negative y-direction. Taking these new
parameters into account, Figure 25 is generated for these
bodies’ trajectories.

Figure 25: Three Bodies in Motion After 50 Days.

Figure 25 shows that the both M1 and M3 traverse similar
paths over this 50 day interval. As time progresses in this
orbit, the largest mass is only influenced by the two smaller
masses. Because of this fact, M2 follows the same path
throughout time. Only M1 and M3 have trajectories that
are different over time. Figure 26 shows this progression
over one year.

Figure 26: Three Bodies in Motion After One Year.

After one years time, the orbits of M1 and M3 start to de-
viate in the path that they traverse. When the two smaller
bodies of mass are in close vicinity of one another, the path
gets altered due to the gravitational attraction of each mass.
It is because of this that the orbit is considered to be chaotic.
Figure 27 shows this orbit over two years.

Figure 27: Three Bodies in Motion After Two Years.
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Figure 27 shows that these orbits are progressively becoming
chaotic with the orbits changing over time. Finally, Figure
28 illustrates the chaotic nature of this system after four
years.

Figure 28: Three Bodies in Motion After Four Years.

Figures 26-28 help illustrate that these orbits are not stable,
and that in fact they are chaotic.

8 Conclusion

We solved for the motion of the three body system numer-
ically with the use of a Forward Euler Difference Scheme.
This was first accomplished by solving for the time that
it would take for a ball to hit the ground due to gravita-
tional acceleration of the Earth. After this scenario, the
two-body system was solved. These systems covered semi
traditional orbits (Like the Earth and Pluto around the Sun)
and also more nontraditional orbits like a planet following
star moving in a linear direction. Once the two-body prob-
lem was solved, the three-body system was then solved. It
was in these systems that we found our most chaotic be-
havior among the bodies in the system. In these systems of
three-body orbits, stable orbits are near impossible to sim-
ulate. It is because of this that most of these systems are
chaotic and tend to not be stable over time. With infinite
different initial conditions for these systems, there are also
infinite solutions for these systems.
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