
Improving Quantum Parameter Estimation

Taylor Larrechea∗

Colorado Mesa University
Department of Physical and Environmental Sciences

1100 North Avenue
Grand Junction, CO 81501-3122

May 9, 2023

Abstract

Quantum parameter estimation is the method of which quantum mechanical systems are used as devices to measure
physical parameters. The parameters that are being estimated arise in various physical processes. Estimation accuracy
is quantified by variance, which is bound by Quantum Fisher Information which can be calculated from the state of the
system. The Quantum Fisher Information depends on whether single or multiple particles are used as probes and whether
their states are correlated or independent. Sometimes certain multiple particle states yield greater accuracy comparable to
classical particle states. Noisy states can mean the initial state is not perfectly known. Estimation has been partially assessed
when available particle states are noisy. When specific channels incorporate additional noise the Quantum Fisher Information
typically decreases rather than when the channels leave the particles undisturbed. When multiple particles are introduced
that undergo phase flips, it has been shown to be advantageous for certain strengths of phase flips whereas depolarizing
channels seldomly yield a better estimation than that of other methods.

Introduction

Quantum parameter estimation or metrology deals with es-
timating physical parameters. Previously metrology has been
studied to see if using one or multiple particles will enhance
estimation. In this paper we will be examining parameters
that appear from phase shifts, phase flips, and depolarizing
evolutions [1, 2, 4, 6]. The research that is being reported in
this article covers a question about how to improve estima-
tion accuracy, particularly by using multiple systems at once
with primarily mixed/ noisy states. Most metrology studies
have been done with pure states. We also examine multiple
particle systems where the spectator in the measurement un-
dergoes noise. When we examine multiple systems at once
we are specifically looking at noisy states (states that are not
pure). This issue becomes important because for applications
such as in NMR (Nuclear Magnetic Resonance) pure states
are not accessible [3].

Quantum Spin - 1/2 Particles

We start with understanding what spin - 1/2 particles are.
Figure 1 illustrates a description of what a measurement pro-
cess on a particle looks like.

Measure Component
Of Spin (n̂)

Spin Up: Sn+
= ℏ

2

Spin Down: Sn− = − ℏ
2

Figure 1: Measuring any component of Ŝ gives one of two outcomes:
S+n = ℏ/2 and S−n = −ℏ/2. The evolution of this spin - 1/2 particle can
be influenced by something like a magnetic field where n̂ is the direction
of the particle in its original state.

A particle that resides in a specific state, usually denoted by

|ψ⟩, can be subjected to a measurement where the measure-
ment outcome is influenced by a physical parameter. Suppose
state ⟨x̂| if we measure S+x we will get ℏ/2 with certainty.
The same can be said with state ⟨−x̂| if we measure S−x we
will get −ℏ/2 with certainty. In general we can obtain ℏ/2
or −ℏ/2 with certainty if we measure in the correct direction
depending upon the original orientation of the particle. This
can be seen in Figure 2.

|+n̂⟩

Choose Sn, Measure

|+n̂⟩

Obtain ℏ/2 With Certainty

Never Obtain −ℏ/2 With Certainty

Figure 2: In the schematic above, we have a particle that is originally
oriented in the +n̂ direction that is being measure in the +n̂ direction
as well. In this scenario we will never obtain −ℏ/2 with some degree of
certainty. When the particle is measured the original state that is in is
changed to a different final state.

If we now extend the scenario in Figure 2 where we are mea-
suring along the same direction as n̂ to measure along a dif-
ferent direction such as m̂ we have a different outcome. The
schematic of this procedure can be seen in Figure 3.

Choose Sm, Measure
Possibly ℏ/2

Possibly −ℏ/2

Figure 3: In this situation it is possible to either obtain ℏ/2 or −ℏ/2.
The probability i s largely dependent upon the direction of which we
choose to measure along.

It should also be noted that if we take an exact copy of the
state |+n̂⟩ in Figure 3 and repeat the same measurement
above we won’t necessarily get the same outcome each time.
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To get a better understanding of the measurement that we
are conducting in Figure 3, Figure 4 is created to provide a
visual representation.

x
n̂

y

m̂

z

Figure 4: This figure is intended to represent how the original state is
oriented with respect to the direction that we are measuring with.

Once the measurement in Figure 3 is conducted, we can pro-
ceed to calculate the probabilities of obtaining ℏ/2 and −ℏ/2.
The general states of a particle can be represented via

|ψ⟩ = a+ |+ẑ⟩+ a− |−ẑ⟩ , (1)

|ψ⟩ = b+ |+ẑ⟩+ b− |−ẑ⟩ .

The bra form of these states are represented by

⟨ψ| = a∗+ ⟨+ẑ|+ a∗− ⟨−ẑ| , (2)

⟨ψ| = b∗+ ⟨+ẑ|+ b∗− ⟨−ẑ| .

It then follows that ⟨ψ| |ψ⟩ = b∗+a+ + b∗−a−. We can measure
two states with ⟨ϕ| |ψ⟩ where both of these states are normal-
ized. For instance, if we wanted to measure state n against
state m we would do so by

⟨±n| |±m⟩ (3)

and the probabilities can be calculated via

Prob(Sn = ±ℏ/2) = | ⟨±n̂| |ψ⟩ |2 (4)

where the probabilities of getting ℏ/2 and −ℏ/2 must add up
to be 1.

When we take a measurement of states the coefficients fol-
low the rule of a0a

∗
0 + a1a

∗
1 = 1. If we have a state |ψ⟩ that

follows these rules we can find θ and ϕ such that we can write
this state in the |±n̂⟩ form.
The measuring of states follow certain rules. Take for in-

stance the inner product of a state that is represented by |+̂z⟩.
The inner product of ⟨+ẑ| |+ẑ⟩ = 1 and more generically the
rule follows ⟨+n̂| |+n̂⟩ = 1 and ⟨−n̂| |−n̂⟩ = 1. Simultane-
ously it is also true that ⟨+n̂| |− |n̂⟩⟩ = ⟨−n̂| |+n̂⟩ = 0. These
rules are valid for any state that is represented by both bras
and kets.

The mathematical representation of these states are

|+n̂⟩ = cos (θ/2) |+ẑ⟩+ eiϕ sin (θ/2) |−ẑ⟩ (5)

and
|−n̂⟩ = sin (θ/2) |+ẑ⟩ − eiϕ cos (θ/2) |−ẑ⟩ (6)

where θ is the angle of n̂ with respect to the x-y plane and
ϕ is the angle off of the z axis. Equations (5) and (6) allow
us to calculate the probabilities with equation (4). Particles
that are subject to being measured can have any orientation
with any value of θ or ϕ. These angles can either represent
the orientation of the initial direction of a particle or how it
was affected once we took our measurement. The angles can
be seen in Figure 5.

x

y

z

r

(r, θ, ϕ)

ϕ

θ

Figure 5: Generic representation of 3D spherical coordinate system.

With these rules of equations (1), (2), (5), and (6) we origi-
nally choose a direction to measure with and we will get one
outcome with some probability. This outcome is entirely de-
pendent upon what direction we choose to measure against.

In an experiment you could check this by doing the same
process many times and checking the probability. We then
begin to have a better understanding of the probability of
obtaining ℏ/2 or −ℏ/2 from our measurement.
Lastly it is more conventional to write equations (5) and

(6) in |0⟩ and |1⟩ notation. Precisely, these equations are

|+n̂⟩ = cos (θ/2) |0⟩+ eiϕ sin (θ/2) |1⟩ (7)

and
|−n̂⟩ = sin (θ/2) |0⟩ − eiϕ cos (θ/2) |1⟩ . (8)

The notation that is denoted in equation (7) and (8) is what
will be used throughout the rest of this paper to described
spin-1/2 particles with specific states.

Entangled and Product States

We consider how to describe multiple particles. When two
particles are being used in a measurement it is essential to
understand that each particle will contribute separately to the
measurement outcome and will do so simultaneously. When it
comes to two particles being used at once there are two kinds
of these states: product and entangled states.

Product and entangled states are states that represent mul-
tiple particles. Product states are two states of which that can
be separated into two separate individual states. Entangled
states are states that involve two states that cannot be sep-
arated such that each individual state can be recognized. To
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have a better understanding of how these measurements work
a schematic is provided in Figure 6.

|ψAi ⟩

Measure in MA

|ψAf
⟩

|ψBi ⟩

Measure in MB

|ψBf
⟩

Figure 6: Example of a two particle measurement scheme.

When these states are being measured like in Figure 6 each
state, |ψA⟩ and |ψB⟩ we have the possibility of either measur-
ing the positive or negative component. The possibilities of
measuring these states can be seen in Table 1 for an easier
representation.

|M̂A⟩ |M̂B⟩ State

+ + |+M̂A⟩ |+M̂B⟩
+ − |+M̂A⟩ |−M̂B⟩
− + |−M̂A⟩ |+M̂B⟩
− − |−M̂A⟩ |−M̂B⟩

Table 1: M̂ is the direction of which we choose to measure. The “+”
and “-” indicate what the possibilities are for each particle that is being
measured.

Take for instance measuring the z component of each spin-
1/2 particle. Within these multiple particle states there are
a set of generic states. These generic states are |0⟩ |0⟩, |0⟩ |1⟩,
|1⟩ |0⟩, and |1⟩ |1⟩. In these generic states we have a combina-
tion of particles either being positive or negative. The |0⟩’s
are positive and the |1⟩’s are negative. If the state is in |0⟩ |0⟩
initially, we will get + for both A and B. If the state is in
|0⟩ |1⟩ initially, we will get + for A and − for B. With the
state being in |1⟩ |0⟩, we will get − for A and + for B. Lastly,
if the state is in |1⟩ |1⟩, we will get − for both A and B.

The generic representation of these states is

|ψ⟩ = c0 |0⟩ |0⟩+ c1 |0⟩ |1⟩+ c2 |1⟩ |0⟩+ c3 |1⟩ |1⟩ (9)

where c0, c1, c2, and c3 are all numeric coefficients for these
these states. Within these dual particle states there are states
of which are entangled or product states where we can take
measurements and calculate probabilities. The way these
probabilities are calculated is

Prob = | ⟨n0,1| ⟨n0,1| |ψ⟩ |2 (10)

where ⟨n0| = ⟨0| and ⟨n1| = ⟨1|. For instance, if the original
state is |ψ⟩ = ⟨0| ⟨1| the outcome for state A is + and state
B is -. This calculation follows the scheme of what is seen in
equation (3) but with two particles instead of just one. That
is why equation (10) is used instead.

A product state means

|ψ⟩ = |ψA⟩ |ψB⟩ (11)

where an example is

|ψ⟩ = 1

2

(
|0⟩ |0⟩+ |0⟩ |1⟩ − |1⟩ |0⟩ − |1⟩ |1⟩

)
. (12)

This means that this state consists of two states that are each
individually their own state. Just as equation (11) represents
a product state, entangled states cannot be written in the
form of equation (11). An example of an entangled state is

|ψ⟩ = 1

2

(
|0⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |0⟩ − |1⟩ |1⟩

)
. (13)

Equation (13) cannot be separated into two separate states
in the form of equation (11) and this is what makes the state
entangled. We cannot come up with a |ψA⟩ and |ψB⟩ for this
specific entangled state.

Unitary Operators

The evolution of a state such as a particle entering a mag-
netic field will now be discussed. Figure 7 depicts an elemen-
tary evolution of a state.

|ψi⟩

Physical Process

|ψf ⟩

Figure 7: Schematic of a unitary operator.

Mathematically the evolution of a state can be calculated by

|ψf ⟩ = Û |ψi⟩ (14)

where Û†Û = Î must be true. These linear operators are also
called unitary operators. The Û in equation (14) is a unitary
operator. As an example, consider

Û =

(
1 0
0 −1

)
. (15)

The effects of the unitary operator represented by equation
(15) acting on specific initial states can be seen in Table 2.

|ψi⟩ Û |ψi⟩ = |ψf ⟩
|0⟩ |0⟩

1√
2

(
|0⟩+ |1⟩

)
1√
2

(
|0⟩ − |1⟩

)
1
2

(
|0⟩+ i |1⟩

)
1√
2

(
|0⟩ − i |1⟩

)
Table 2: Effect of a unitary operator, equation (14) acting on spin-1/2
particle.

When the unitary operator in equation (15) acts on the spin-
1/2 particles in Table 1 it subsequently rotates the direction
that it was originally oriented in. For instance, these rotations
are occurring about the z axis. The state that is originally in
the +x direction rotates to the −x direction. Conversely the
+y orientation shifts to the −y. The particle that is oriented
originally in the ±z direction is unaffected and remains the
same after the evolution. These shifts can be seen in Table 3.
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|ψi⟩ (θi) |ψi⟩ (ϕi) |ψf ⟩ (θf ) |ψf ⟩ (ψf )
0 0 0 0
π/2 0 π/2 π
π/2 π/2 π/2 3π/2

Table 3: The effect of equation (15) on the θ and ϕ angles.

The rows in Table 3 are angles in radians for each state pre-
viously mentioned in Table 2. It can be observed that the
θ angle is not affected by the unitary operator acting on the
spin-1/2 particles in these specific original states. Instead,
when the spin-1/2 particle is originally oriented in the x or
y-direction the ϕ angle is reoriented by an angle of π. This is
because this unitary operator is causing a rotation for these
particles about the z axis. This rotation about the z axis
is why the particle that is originally oriented in the z direc-
tion (The first row of Table 3) is unaffected by this unitary
operator in equation (15).

There are also special unitary operators called Pauli op-
erators and there is one Pauli operator for the x, y, and z-
direction. The Pauli operators are

σ̂x =

(
0 1
1 0

)
, (16)

σ̂y =

(
0 −i
i 0

)
, (17)

and

σ̂z =

(
1 0
0 −1

)
. (18)

Similar to unitary operators, Pauli operators all follow a cer-
tain list of specific rules. The first rule is that any Pauli
operator in any direction multiplied with itself will yield the
identity matrix. Mathematically this means

σ̂n
2 = Î (19)

where n is either the x, y, or z-direction. The next rule is
for when we multiply separate Pauli operators in different
directions we get something of the form iσn. Particularly
these rules are

σ̂xσ̂y = iσ̂z, (20)

σ̂yσ̂z = iσ̂x, (21)

σ̂zσ̂x = iσ̂y, (22)

and
σ̂xσ̂y = −σ̂yσ̂x. (23)

The last rule is

σ2 =
(
n2x + n2y + n2z

)
Î (24)

where
σ̂n = nxσ̂x + nyσ̂y + nzσ̂z (25)

with nx, ny, and nz all being constants. With these rules
we can drastically simplify our math when dealing with these
Pauli operators.

These Pauli operators will be referenced later in this pa-
per and instead of writing out a matrix every time they are
mentioned we will just refer to these equations.

Unitary Operators With a Parameter

Unitary operators can describe physical evolution’s that are
dependent upon parameters. Take for instance

Û(λ) =

(
e−iλ/2 0

0 eiλ/2

)
(26)

which is dependent upon the parameter λ. When this unitary
operator acts on states it will produce a final state after that is
also dependent upon a parameter. The results of this unitary
operator acting on specific spin-1/2 states can be seen in Table
4.

|ψi⟩ Û |Ψi⟩ = |ψf ⟩
|0⟩ e−iλ/2 |0⟩

1√
2

(
|0⟩+ |1⟩

)
1√
2

(
e−iλ/2 |0⟩+ eiλ/2 |1⟩

)
1
5

(
4 |0⟩+ 3 |1⟩

)
1
5

(
4e−iλ/2 |0⟩+ 3eiλ/2 |1⟩

)
Table 4: Effect of the unitary operator Û(λ), equation (26), on initial
spin-1/2 particle states.

Using the |ψf ⟩ states and comparing them with |ψi⟩ we can
see how the unitary operator affected the original state. These
effects can be seen in Table 5.

|ψi⟩ (θi) |ψi⟩ (ϕi) |ψf ⟩ (θf ) |ψf ⟩ (ϕf )
0 0 0 0
π/2 0 π/2 λ
73.7◦ 0 73.7◦ λ

Table 5: Effect of the unitary operator Û(λ), equation (26), on the θ
and ϕ angles.

What happens to these states geometrically is that when a
particle is originally in the state |ψi⟩ it will be mapped to |ψf ⟩.
In the context of this example the θ angles of the second and
third states are unaffected where the ϕ angle is being rotated
by the angle λ.

Another way of writing unitary operators is with the use of
matrix exponentials. This can be done using the formula

e−iλσ̂n = cos (λ)Î − i sin (λ)σ̂n. (27)

For example, e−iλσ̂z can be written in the matrix form

e−iλσ̂z =

(
cos (λ)− i sin (λ) 0

0 cos (λ) + i sin (λ)

)
. (28)

This is a more compact way to represent this matrix with
e−iλσ̂z .

Two Qubit Unitary Operators

It is also necessary to describe the evolution of multiple
particles. Consider two qubits, schematically these two qubit
unitary operators can be thought of as what is pictured in
Figure 8.
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|ψAi⟩
ÛA

|ψAf ⟩ = ÛA |ψAi⟩

|ψBi⟩
ÛB

|ψBf ⟩ = ÛB |ψBi⟩

Figure 8: A schematic of a particular type of a two qubit unitary

operator. ÛA and ÛB are unitary operators that each represent a specific
particle evolution.

These two qubit unitary operators consist of two 2 × 2 uni-
taries. Two qubit unitary operators can be calculated via a
tensor product. The tensor product of two matrices is

Â⊗ B̂ =


a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4

 . (29)

Consider for instance the two evolution operators

ÛA =

(
e−iα/2 0

0 eiα/2

)
(30)

and

ÛB =

(
e−iβ/2 0

0 eiβ/2

)
. (31)

Taking the tensor product of the matrices in equation (30)
and (31) we get

e−i(α+β)/2 0 0 0
0 ei(β−α)/2 0 0
0 0 ei(α−β)/2 0
0 0 0 ei(α+β)/2

 (32)

as what is called a joint operator. These two qubit unitary
operators will be discussed more thoroughly in the pursuit
of determining a parameter. This joint operator describes the
evolution of a two qubit state such as the one seen in equation
(9).

In the presence of two qubits interacting the evolution has
to be described by an operator that acts on a pair of qubits.
A common qubit unitary that behaves in this manner is called
the controlled-NOT gate and is denoted ÛCNOT . This matrix
is abbreviated by ÛCNOT and is

ÛCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (33)

and has the ability to change a product state to an entangled
state for given initial states. The evolution of specific states
under the controlled not unitary operator can be seen in Table
6.

|ψ0⟩ ˆUCNOT |Ψ0⟩ = |ψ⟩ Result
1√
2
(|0⟩ |0⟩+ |0⟩ |1⟩) 1√

2
(|0⟩ |0⟩+ |0⟩ |1⟩) Prod.

1√
2
(|0⟩ |0⟩+ |1⟩ |0⟩) 1√

2
(|0⟩ |0⟩+ |1⟩ |1⟩) Ent.

1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩) 1√

2
(|0⟩ |0⟩+ |1⟩ |0⟩) Prod.

1√
2
(|0⟩ |1⟩+ |1⟩ |0⟩) 1√

2
(|0⟩ |1⟩+ |1⟩ |1⟩) Prod.

Table 6: Effect of the controlled not operator acting on original product
and entangled states.

As observed in Table 6, sometimes the controlled-NOT oper-
ator converts a product state to an entangled state and vice
versa.

Density Operators

We now examine density operators. With density operators
we do not specifically know the state of the particle with cer-
tainty. For example we know |ψ1⟩ with probability a1 and |ψ2⟩
and probability a2. With this information one can calculate
probabilities of measurement outcomes.

Mathematically these density operators can be calculated
by

ρ̂ = a1 |ψ1⟩ ⟨ψ1|+ a2 |ψ2⟩ ⟨ψ2| . (34)

For instance, if we know that the initial state is |0⟩ with the
probability of q and |1⟩ with the probability of 1 − q, the
respective density operator ρ̂ is

ρ̂ =

(
q 0
0 1− q

)
. (35)

A pure state is if the state of the system can be described by
a ket |ψ⟩ and is calculated via ρ̂ = |ψ⟩ ⟨ψ|. In the case of pure
states one can show that ρ̂2 = ρ̂. If the state is not a pure
state the density operator cannot be written as ρ̂2 = ρ̂.

The way we calculate the probability of a measurement out-
come is

Probability = Tr[ρ̂Π̂] (36)

where the trace of a matrix, Tr, is defined as the addition
of the diagonals of a matrix. In equation (36) Π̂0 is a mea-
surement operator for a given direction. The way these two
measurement operators measure something like Sn are calcu-
lated via

Π̂+n = |+n̂⟩ ⟨+n̂| (37)

and
Π̂−n = |−n̂⟩ ⟨−n̂| . (38)

Equation (37) represents if we are measuring the S+ direction
and equation (38) represents the measurement of S−.
An example of how these measurement operators are used

can be done with a density operator. Take for instance the
density operator

ρ̂ =
1

2

(
1 r
r 1

)
(39)

where we wish to calculate the probability of measuring ℏ/2
and −ℏ/2 for the x and y-directions. A schematic of how
these measurement operators work can be seen in Figure 9.
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Π̂0 Û(λ)

Figure 9: Evolution of a single qubit density operator evolution.

It should be noted that r ranges between 0 and 1. The
measurement operator for the positive x-direction is

Π̂+x =
1

2

(
1 1
1 1

)
(40)

and the negative x-direction is

Π̂−x =
1

2

(
1 −1
−1 1

)
. (41)

The measurement operator for the positive y-direction is

Π̂+y =
1

2

(
1 −i
i 1

)
(42)

and the negative y-direction is

Π̂−y =
1

2

(
1 i
−i 1

)
. (43)

Using equation (36) we can calculate the probabilities for both
of these directions. The results for these calculations can be
seen in Table 7.

Direction Probability
Tr[ρ̂ρ̂+x]

1
2 (1 + r)

Tr[ρ̂ρ̂−x]
1
2 (1− r)

Tr[ρ̂ρ̂+y]
1
2

Tr[ρ̂ρ̂−y]
1
2

Table 7: Probabilities of measuring ℏ/2 and −ℏ/2 with the x and y-
direction density operatorsas defined in equations (39) through (43).

Under a physical process, the density operator must evolve.
This is given by

ρ̂(λ) = Û(λ)ρ̂0Û
t(λ). (44)

Using the density operator in equation (39) with the unitary
operator

Û(λ) =

(
e−iλ/2 0

0 eiλ/2

)
(45)

the result of equation (44) is

ρ̂(λ) =
1

2

(
1 re−iλ

reiλ 1

)
. (46)

The result from equation (46) shows that a unitary that is
dependent upon a parameter can produce a density operator
that is dependent upon a parameter.

Fisher Information

When estimating parameters we assume that there is a
known process that depends upon an unknown parameter.
The example of a coin flip experiment illustrates issues in
classical estimation. One wants to estimate the parameter
by subjecting physical systems to a process followed by mea-
surements. Once these measurements are taken one can infer
the parameter from these measurements. When this physical
process is repeated there will be different outcomes due to
statistical fluctuations. One such example of this is a coin flip
experiment.

Consider a coin flip experiment where the only possible out-
comes are heads or tails. In this experiment we are interested
in finding the probability of how often we will obtain heads.
The probability of how often heads occurs in this experiment
is represented by P . This value of P is unknown and is the
goal of what we want to estimate. One would flip the coin
N times. Then the number of times that heads occurs will
be recorded as nH . Mathematically, the probability estimate
can be calculated via

Pest =
nH
N
. (47)

After many calculations with the use of statistical rules and
runs of the same experiment we can determine that

P̄est = P (48)

which means that after many trials we should expect to see
that our average probability estimate will equal the probabil-
ity itself. The variance can be calculated via

ν = P̄ 2
est − (P̄est)

2. (49)

and quantifies the fluctuation in our estimate. In the context
of a coin flip experiment the variance can be calculated to be

ν =
P

N
(1− P ) (50)

where P is the probability of getting heads and N is the num-
ber of times that the experiment is ran. The larger value of N,
or how many times the experiment is conducted, the smaller
variance we will obtain in the experiment.

The estimate improves with a higher number of trials and
one can estimate in many ways using N and nH . We then be-
gin to ask which would be best. We can show that regardless
of estimation choice the best that one can do is

ν(Pest) ≥
1

FN Toss
(51)

[3]. FNToss is the Fisher Information and is not dependent
upon what one does with nh and N . The Fisher Informa-
tion bounds the variance of a measurement. The variance
decreases with a higher Fisher Information value. A smaller
variance means a more precise measurement.

The formula for how the Fisher Information is calculated is

F = Σ
1

P(Outcome)

(∂P(Outcome)

∂Parameter

)2
(52)
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where P(Outcome) is a probability that is calculated in the
measurement procedure [5]. In the context of a coin flip ex-
periment where the only two possible outcomes are heads or
tails the Fisher Information of N number of tosses is

FN Toss = N · F =
N

P (1− P )
. (53)

Equation (53) represents the simplest example of the Fisher
Information that can be used in an experiment with a finite
number of possible outcomes. Once the probabilities within
a measurement are calculated we can proceed to run them
through equation (52) and then add all of these results to-
gether at the end. In the context of this coin flip experiment
the Fisher Information eliminates the choice of what to do
with nH .

Fisher Information of Product and
Entangled States

The Fisher Information depends on probabilities of mea-
surements. The probabilities of measurements depend on the
choice of the measurement. For example if the measurement
is done in x or z direction. The question that arises is what
measurement gives the greatest Fisher Information.

For example consider estimating the parameter λ in the
phase shift of equation (54)

Û(λ) =

(
e−iλ/2 0

0 eiλ/2

)
. (54)

This evolution operator acts on a spin-1/2 particle in the ini-
tial state

|ψi⟩ =
1√
2

(
|0⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |0⟩+ |1⟩ |1⟩

)
(55)

and turns into the state

|ψf ⟩ =
1√
2

(
e−iλ |0⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |0⟩+ eiλ |1⟩ |1⟩

)
. (56)

The evolution operator in equation (54) acts on both particles
in equation (55). We then ask which direction would be the
best to choose for a measurement. For example we can take
measurements for the x-direction of the state described by
equation (56) by

⟨±x| ⟨±x| |ψ⟩ (57)

and conversely the probabilities can be calculated via

| ⟨±x| ⟨±x| |ψ⟩ |2. (58)

Listing outcomes for each possible combination of +x and −x
states, the probabilities of these can be seen in Table 8. The
Fisher Information is only dependent upon the measurement
choice. The Fisher Information for the |ẑ⟩ and |−ẑ⟩ would
both be zero.

Outcome Probability

⟨+x| ⟨+x| |ψ⟩ 1
4

(
1 + 2 cos (λ) + cos2 (λ)

)
⟨+x| ⟨−x| |ψ⟩ 1

4 sin
2 (λ)

⟨−x| ⟨+x| |ψ⟩ 1
4 sin

2 (λ)

⟨−x| ⟨−x| |ψ⟩ 1
4

(
1− 2 cos (λ) + cos2 (λ)

)
Table 8: Outcomes and probabilities of the state described by equation
(55).

Using the probabilities of Table 8 and equation (52) the Fisher
Information comes out to be 2.

Consider an entangled state

|ψ0⟩ =
1√
2

(
|0⟩ |0⟩+ |1⟩ |1⟩

)
(59)

which evolves to

|ψ⟩ = 1√
2

(
e−iλ |0⟩ |0⟩+ eiλ |1⟩ |1⟩

)
(60)

when the evolution operator described in equation (54) is
acted upon it. The measurements and probabilities of this
entangled state can be seen in Table 9.

Outcome Probability
⟨+x| ⟨+x| |ψ⟩ 1

2 cos
2 (λ)

⟨+x| ⟨−x| |ψ⟩ 1
2 sin

2 (λ)

⟨−x| ⟨+x| |ψ⟩ 1
2 sin

2 (λ)
⟨−x| ⟨−x| |ψ⟩ 1

2 cos
2 (λ)

Table 9: Measurements and probabilities of the entangled state de-
scribed by equation (59).

Using the probabilities of Table 9 and equation (52) the Fisher
Information comes out to be 4. This Fisher Information for
an entangled state is twice that of a product state. What this
shows is that sometimes entangled states serve as a better way
of estimating parameters while measuring.

Quantum Fisher Information of Pure
States

In the previous sections we discovered that the Fisher In-
formation is dependent upon the choice of measurement that
we make. In the context of Quantum Fisher Information our
Classical Fisher Information is bound by our Quantum Fisher
Information. Precisely we will be discussing the Quantum
Fisher Information of pure states first. The Quantum Fisher
Information for pure states is calculated via

H = 4
[∂ ⟨ψ|
∂λ

· ∂ |ψ⟩
∂λ

+
(
⟨ψ| · ∂ |ψ⟩

∂λ

)2]
(61)

[3]. The reason for calculating the Quantum Fisher Informa-
tion is to find a bound for the Classical Fisher Information. It
is crucial to understand that this does not depend upon the
measurement choice. This relationship mathematically is F ≤
H.
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For example the unitary operator that we will be using to
calculate the Quantum Fisher Information is

Û(λ) = e−iλσ̂z/2. (62)

This unitary is only one example of many possible unitaries.
First we examine a single spin-1/2 particle originally in the
positive z-direction

|ψ⟩ = |0⟩ (63)

where when equation (61) is used the Quantum Fisher Infor-
mation comes out to be H = 0. This result tells us that the
state |0⟩ does not reveal any information about the parameter.
Now suppose the system is in the state

|ψ⟩ = 1√
2
(|0⟩+ |1⟩). (64)

This yields a Quantum Fisher Information of H = 1. Next
we examine the system that is originally in the state

|ψ⟩ = 1√
2
(|0⟩+ i |1⟩) (65)

and has a Quantum Information of H = 1.
The next set of examples for calculating the Quantum

Fisher Information is that of product and entangled states.
As a review product and entangled states are states that con-
sist of two particles, product states are able to be separated
such that we can write each particle as its own state where
as we cannot do the same with entangled states. Take for
instance the product state

|ψ⟩ = 1

2
(|0⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |0⟩+ |1⟩ |1⟩). (66)

We wish to calculate the Quantum Fisher Information with
the same original unitary operator defined in equation (62).
In each case we can write the state after the Û(λ) evolution.
In these examples stated the unitary acts on each particle in
the system. The Quantum Fisher Information for this product
state comes out to be H = 2 which is twice that of a single
particle state. Lastly we wish to examine the Quantum Fisher
Information of an entangled state

|ψ⟩ = 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩). (67)

The mathematics of the Quantum Fisher Information of this
entangled state comes out to be H = 4 which is twice that of
the product state previously mentioned. This result tells us
that entangled states can yield a better measurement with less
variance compared to any product. It is possible for entangled
states to yield a better measurement in comparison to product
states. The product state in equation (66) is the best case for
a product state while taking a measurement.

Quantum Fisher Information of
Mixed States

Just as we can calculate Quantum Fisher Information of
pure states, we can also do the same for mixed states. Con-
sider estimating the phase shift parameter λ in

Û(λ) = e−iλσ̂z/2. (68)

One thing that is worth investigating first is the optimal state
for such measurements where the Quantum Fisher Informa-
tion will be at its highest. This state is represented by

|ψ0⟩ = a0 |0⟩+ a1 |1⟩ (69)

and after the calculation the optimal value for a0 and a1 turns
out to be 1/

√
2. This means that with these values for a0

and a1 we will have the largest value for the Quantum Fisher
Information.

Take for instance the density operator

ρ̂ =
1

2

(
1 −ir
ir 1

)
(70)

where r ranges between 0 and 1. For the density operator
in equation (70) to be pure we must have r = 1 otherwise
the density operator will be mixed. Examining one more den-
sity operator that is dependent upon parameters the following
density operator

ρ̂ =
1

2

(
1 rx − iry

rx + iry 1

)
(71)

which is dependent upon rx and ry. For the density operator
in equation (71) to be pure r2x+ r

2
y = 1. Now that we have an

understanding of what pure and noisy state are we can move
on to examining the Quantum Fisher Information.

Relationships for Quantum Fisher In-
formation of Phase Shifts

Another point of interest is trying to create a relationship
for how the Quantum Fisher Information of phase shifts in-
creases for an arbitrary number of particles. It can be shown
that for n number of particles that are of the best possible
product state variety the Quantum Fisher Information is

H = n. (72)

The relationship in equation (72) says that for n number of
pure particle product states the Quantum Fisher Information
is n. The same calculation for n number of pure entangled
states can be done and that relationship is

H = n2. (73)

This means that for pure entangled states there is an n fold
advantage for the Quantum Fisher Information calculation.
Simply put, the entangled states yield a higher Quantum
Fisher Information for pure states undergoing a phase shift
and thus a smaller variance when estimating the parameter.

Quantum Fisher Information of Noisy
States

In the previous section we discussed calculating the Quan-
tum Fisher Information of pure states and creating relation-
ships about the Quantum Fisher Information and pure states.
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In this section we will discuss calculating the Quantum Fisher
Information of noisy states. In the previous examples with
density operator the r value that appeared in the matrices
was equal to one. In the examples that will be discussed in
this section the r value is between zero and one, but not one
exactly.

Calculating the Quantum Fisher Information for noisy
states is different from pure states. The Quantum Fisher In-
formation for noisy states can be calculated by

H = Tr[ρ̂L̂2] (74)

where L̂ satisfies

∂ρ̂

∂λ
=

1

2

[
ρ̂L̂+ L̂ρ̂

]
. (75)

For the examples that we are covering, the way L̂ is calculated
is

L̂ =
1

Tr(ρ̂)

[
2 · ∂ρ̂

∂λ
− ∂ ln(α)

∂λ
ρ̂
]

+
∂

∂λ

[
ln(α)− ln(Tr(ρ̂))

]
Î (76)

[3] where α = Tr(ρ̂2) − (Tr(ρ̂))2. These equations are only
true for 2×2 matrices and where α ̸= 0.

Take for instance the density operator

ρ̂0 =
1

2

(
1 r
r 1

)
(77)

that is subject to the same unitary operator represented by
equation (62). The resulting state is

ρ̂0 =
1

2

(
1 re−iλ

reiλ 1

)
(78)

and when we utilize equations (74) and (75) the outcome is

H = r2. (79)

At its highest the Quantum Fisher Information will be one
for a pure state. As the initial state becomes more noisy, i.e
the r value approaches zero the Quantum Fisher Information
will decrease. We can now do the same sort of calculation for
multiple noisy particles.

Both particles enter the same Uprep where only one particle

after it goes through Uprep is subject to evolution of Û(λ).
The depiction of this measurement can be seen in Figure 10.

ρ̂0

ρ̂0

UPrep

Û(λ)

Figure 10: Schematic of two particle unitary evolution. Ûprep is a ma-
trix that consists of single qubit operations where one of the operations
is between two particles.

Take for instance the unitary operator operator that is con-
structed via Û(λ)⊗ Î from equation (29)

Û(λ) =


e−iλ/2 0 0 0

0 e−iλ/2 0 0
0 0 eiλ/2 0
0 0 0 eiλ/2

 (80)

that acts on the density operator

ρ̂ =
1

16


4 + 4r2 0 0 −8ir

0 4− 4r2 0 0
0 0 4− 4r2 0
8ir 0 0 4 + 4r2

 . (81)

Uprep is the unitary of when equation (80) acts on equation
(81). We can calculate the Quantum Fisher Information for a
two particle system in a similar manner of the single particle
system. The only difference is that there is a 4 × 4 matrix
that actually consists of two 2×2 matrices. So we just have to
calculate the Quantum Fisher Information of each matrix and
then add them together. When the matrix in equation (80)
acts on the matrix in (81) the Quantum Fisher Information is

H =
2r2

1 + r2
. (82)

When we compare the single particle result to the two parti-
cle result for very noisy states the two particle state has twice
the Quantum Fisher Information for very noisy states. When
the states are not very noisy, the advantage of this method
is 2/(1 + r2). Once again though the two particle system is
more accurate in estimating the parameter compared to that
of the single particle system.

Modeling of Noise

In this section we will be discussing the modeling of noise
and the evolution that they have on density operators. The
noise that gets implemented into these measurements will de-
crease the accuracy of the parameter estimation. This evolu-
tion for the specific example of rotation about the z axis of π
with probability (1− α) and α can be calculated via

ρ̂f = (1− α)ρ̂i + ασ̂z ρ̂iσ̂z (83)

where α is a parameter between zero and one. This phe-
nomenon is called a phase flip and possibly rotates the particle
around the z axis. For particles that are originally oriented in
the z and −z directions there is no change in orientation. If
we examine a particle originally oriented in the +x direction
with a density operator

ρ̂ =
1

2

(
1 1
1 1

)
, (84)

the state after is

ρ̂ =
1

2

(
1 1− 2α

1− 2α 1

)
. (85)
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This operator can also be written in the form

ρ̂ =
1

2

(
Î + (1− 2α)σ̂x

)
. (86)

If we examine another initial direction for how noise evolves
a particle, say the −y direction with the density operator of

ρ̂ =
1

2

(
1 i
−i 1

)
(87)

originally, the state after is

ρ̂ =
1

2

(
1 i(1− 2α)

i(2α− 1) 1

)
. (88)

This final density operator can be written in the form of

ρ̂ =
1

2

(
Î + (2α− 1)σ̂y

)
. (89)

These calculations are vital for understanding how particles
evolve in certain systems when we are trying to obtain mea-
surement estimates.

The evolution of the states that undergo this noise can be
summarized as follows. The state |0⟩ ⟨0| goes to |0⟩ ⟨0|. The
same can be said for the state |1⟩ ⟨1| goes to |1⟩ ⟨1|. The
state |0⟩ ⟨1| goes to (1−2α) |0⟩ ⟨1| and the state |1⟩ ⟨0| goes to
(1− 2α) |1⟩ ⟨0|. There will be different evolutions for different
σ̂c’s in equation (83).

Quantum Fisher Information Involv-
ing Phase Flips

Now that we have an understanding of how we model noise
we can move on to estimating parameters in these situations
where noise exist. Using the density operator in equation (81)
and the unitary operator in equation (80) we wish to exam-
ine the accuracy of this estimation procedure this is. With
this scenario, one particle is being influenced by the unitary
operator and the other is undergoing a phase flip defined by
equation (83) in Figure 11.

ρ̂0

ρ̂0

UPrep

Û(λ)

Phase Flip

Figure 11: Schematic of two particle one channel phase flip evolution.

The resulting Quantum Fisher Information is

H =
2r2(1− 2α)2

(1 + r2)
. (90)

When 2(1 − 2α)2/(1 + r2) > 1 the result in equation (90) is
a better estimation than that of equation (79). This tells us
that the procedure in Figure 11 is a better estimation than
that of a single particle undergoing a phase flip on its own.

The α value in equation (83) defines how much additional
noise is present. If α = 0 then the state has no additional

noise. If α = 1 then the state has significant additional noise.
When we examine the extremes of this scenario, i.e α = 0 or
α = 1 we have the Quantum Fisher Information in equation
(82). When α = 1/2 the Quantum Fisher Information is 0
and the parameter cannot be estimated.

We can examine the same scenario but instead of σ̂z in
equation (77) we will examine a bit flip with σ̂x. When this
scenario is examined and the calculation is done, the Quantum
Fisher Information is

H =
2r2α2

((2α− 1)r2 + 1)
+

2r2(1− α)2

(1− (2α− 1)r2)
. (91)

When we examine the same extreme scenarios we still get the
result in equation (82).

Additional Phase Flips

We now examine scenarios with additional phase flips. Take
for instance the measurement that resulted in having a the
Quantum Fisher Information come out to be H = r2 rep-
resented by the result found in equation (79). Taking the
previous scenario and adding a phase flip can be represented
by the following schematic in Figure 12.

Û(λ) Phase Flip

Figure 12: Single particle procedure with a phase flip.

The procedure that is depicted in Figure 12 involves one par-
ticle with the unitary Û(λ) = e−iσ̂zλ/2 and a phase flip in
the z direction. When this is calculated the Quantum Fisher
Information is

H = r2(1− 2α)2 (92)

where α comes from the phase flip in Figure 12. The difference
between this result as seen in equation (92) and the result in
equation (79) is the (1−2α) component. This is coming from
the phase flip that the spin - 1/2 particle experiences. With-
out this phase flip, the measurement is more precise. With
the phase flip introduced the measurement of the parameter
at question is subsequent to be interfered with and thus is less
accurate.

This process of introducing a phase flip to previous mea-
surements can also be implemented to the result in equation
(90). This measurement had one particle undergo a phase
flip while the other particle evolved under a unitary opera-
tor. Now, in this new scenario the particle that evolved un-
der a unitary operator will also undergo a phase flip as well.
Schematically this can be represented by the diagram shown
in Figure 13.
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UPrep

Û(λ)

Phase Flip

Phase Flip

Figure 13: Dual particle phase flip evolution. The first particle under-
goes an evolution with a unitary operator and then a phase flip. The
second particle undergoes only a phase flip.

These particles in Figure 13 evolve under the same UPrep op-
erator as those in the previous two particle scenarios. The
Quantum Fisher Information is

H =
2r2(1− 2α)2(1− 2β)2

(1 + r2)
. (93)

The α in equation (93) represents the top particle’s phase flip
in Figure 13 and the β is the lower particle phase flip. Re-
gardless of the extra particle undergoing a phase flip in Figure
13, this method of estimating a parameter is still more accu-
rate than that of Figure 12 unless β is large enough. When
the state of the particle is undergoing a lot of noise (r << 1)
there is an advantage of H = 2(1 − 2β)2. When β = 1 or
β = 0 there is a two-fold advantage of using the method of
parameter estimation in Figure 13 compared to that of the
method in Figure 12.

Depolarizing Channels

The topic of depolarizing channels will now be discussed.
This situation can be represented schematically as seen in
Figure 14.

UPrep

Û(λ)

Depolarize

Figure 14: Two particle system with one particle undergoing a unitary
evolution and the other a depolarization.

The way these particles undergo a depolarization can be cal-
culated via

ρ̂f =
(1− α

2

)
Tr[ρ̂i]Î + αρ̂i (94)

where the ρ̂ in equation (94) represents the state of the par-
ticle that is undergoing a depolarization. When this scenario
in Figure 14 is calculated, the Quantum Fisher Information
comes out to be

H =
4r2α2

(1 + r2)(1 + α) + (1− r2)(1− α)
. (95)

When the result in equation (95) is compared to that of the
scenario in Figure 12 along with the states (r << 1) the Quan-
tum Fisher Information is then H = 2α2. When α = 1 (De-
polarization is minimal) this method has a two-fold advantage
when estimating the parameter.

Phase Flip With λ Parameter

Previously phase flips with α as the parameter have been
discussed. Now phase flips with a λ as the parameter will be
discussed. In these examples we are trying to estimate λ. We
are pursuing to estimate the parameter λ and this phase flip
is calculated via

ρ̂f = (1− λ)ρ̂i + λσ̂z ρ̂iσ̂z (96)

where equation (96) is the same as equation (83) but with a λ
instead of an α. One can perform this calculation for one or
multiple particles and then calculate the Quantum Fisher In-
formation. The first scenario that will be examined is a single
particle undergoing this phase flip evolution and then calcu-
lating the Quantum Fisher Information after. This scenario
can be seen in Figure 15.

Phase Flip

Figure 15: A single particle evolution through the phase flip defined
in Equation (96). After this particle undergoes the phase flip the QFI is
calculated.

The Quantum Fisher Information for the scenario in Figure
15 is

H =
4r2

1− r2(1− 2λ)2
. (97)

One can now ask questions about what the Quantum Fisher
Information of this measurement becomes with λ values <<
1 and r values << 1. How the Quantum Fisher Information
of this measurement changes with varying λ and r values can
be seen in Figure 16.

Figure 16: Quantum Fisher Information of the scenario depicted in
Figure 15.

As the initial state of the system becomes more noisy the
Quantum Fisher Information of this calculation approaches 0.
The λ value in Equation (97) is less influential to the overall
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Quantum Fisher Information compared to that of the r value.
A dual particle evolution can now be looked at.

We are now interested in examining a scenario where two
particles enter a unitary operator and one particle is then
subjected to a phase flip with the parameter λ. The first
channel of the measurement is subjected to a phase flip and
the second channel is left undisturbed. This second channel
is sometimes referred to as the spectator of the measurement.
This can be seen in Figure 17.

ÛPrep

Phase Flip

Figure 17: Two particles enter the Ûprep unitary operator and then
the first particle is subjected to a phase flip defined by Equation (96).

When the Quantum Fisher Information in Figure 17 is calcu-
lated it is found to be

H =
8r2(1 + r2)

(1 + r2)2 − 4r2(1− 2λ)2
. (98)

We can now examine when equation (98) is more advanta-
geous to use as a measurement scheme than that of equation
(97). This is done by dividing the equation (98) by that of
equation (97). This result is called the gain for the protocol
in Figure 17 and the gain is

G =
2(1 + r2)(1− r2(1− 2λ)2)

(1 + r2)2 − 4r2(1− 2λ)2
. (99)

Equation (99) quantifies when the scenario in Figure 17 is
more advantageous than the one depicted in Figure16. Graph-
ically this gain can be seen in Figure 18.

Figure 18: The gain that is observed is greatest when λ = 0 or λ = 1
and when r = 1.

There is little to no advantage using the method of measure-
ment in Figure 17 compared to that in Figure 15 when λ
ranges between 0 and 1 when the original state of the system

is pure. The phase flip parameter λ becomes less and less
important to the gain of the measurement when the purity of
the system decreases.

We now wish to examine a scenario where both particles
undergo a phase flip. The first particle undergoes a phase flip
with the parameter λ and the second undergoes a phase flip
with the parameter α. This scenario can be seen in Figure 19.

ÛPrep

Phase Flip λ

Phase Flip α

Figure 19: The first particles phase flip is characterized by λ and the
second particles phase flip is characterized by α.

When the Quantum Fisher Information for this scenario is
calculated it comes out to be

H =
8r2(1− 2α)2(1 + r2)

(1 + r2)2 − 4r2(1− 2λ)2(1− 2α)2
. (100)

We can now look for when the scenario in Figure 19 is more
advantageous as a measuring scheme than that of Figure 15.
The gain of the scenario in Figure 19 compared to the scenario
in Figure 15 is

G =
2(1− 2α)2(1 + r2)(1− r2(1− 2λ)2)

(1 + r2)2 − 4r2(1− 2λ)2(1− 2α)2
. (101)

When α = 0 in equation (101) the gain reduces to the gain
found in equation (99). Since this gain involves three variables
in it, we have to choose one variable that will be held constant
while the other two are varied. Since the main difference
between the scenario in Figure 17 and the one in Figure 19 is
the additional phase flip α we will choose to hold α constant.
When α = 0.01 the gain of the scenario in Figure 19 compared
to that of Figure 15 can be seen in Figure 20.

Figure 20: Gain when α = 0.01.

This gain is when α << 1 and almost doesn’t contribute to
the Quantum Fisher Information. We can now increase the
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value of α to 0.1 and graph it again. This result can be seen
in Figure 21.

Figure 21: Gain when α = 0.1.

When the α valued is increased to 0.1 from 0.01 the gain
is decreased. This shows that the second phase flip is being
destructive to our measurements and in turn is proving to not
be as beneficial. There will still be some gain when r ≈ 0.5 is
lower or higher but it isn’t anything that is extremely greater.
Changing α to 0.2 from 0.1 Figure 22 is produced.

Figure 22: Gain when α = 0.2.

When α = 0.2 the scenario in Figure 19 is not beneficial to the
scenario in Figure 15. In fact Figure 19 proves to be detrimen-
tal to that of Figure 15. This detriment is just exacerbated
when the value of α increases and we can observe this when
α = 0.3 in Figure 19.

Figure 23: Gain when α = 0.3.

At this point the gain when α = 0.3 is almost a third at the
best point that is possible. We would be better off using the
scenario in Figure 15 as a measurement procedure compared
to that of the one found in Figure 19. The gain is decreased
even more when α = 0.4 and can be seen in Figure 24.

Figure 24: Gain when α = 0.4.

The Quantum Fisher Information and gain is decreased to
zero when α = 0.5 and this can be seen in Figure 25.
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Figure 25: Gain when α = 0.5.

At certain choices of α it is not advantageous to use the
method depicted in Figure 19 compared to that of Figure 15.
For very specific values of α it is disastrous to use the method
in Figure 19 compared to that in Figure 15. This happens
when α = 0.5.

An inequality can be determined to describe when using the
scenario in Figure 19 is advantageous to that of the scenario
in Figure 15. This inequality is

α <
1

2

(
1−

√
γ2

2γ − 2r2η2γ + 4r2η2

)
(102)

where γ = (1 + r2) and η = (1 − 2λ). Equation (102) shows
that for only certain values of α the scenario in Figure 19 is
more useful as a measuring tactic compared to that of Fig-
ure 15. What this inequality ends up showing is that for
noisy states Figure 19 is more useful than that of Figure 15.
Graphically this inequality can be seen in Figure 26.

Figure 26: Graph of the right hand side of the inequality in equation
(102). This graph tells what α will limit the gain. As the initial state
becomes more pure the advantage of the scenario in Figure 19 becomes
less advantageous than that of Figure 15.

The gain in Figure 26 decreases significantly as the initial
state becomes more pure. What can be taken away from this
is that for certain values of α it is more advantageous to use
the scenario in Figure 15 than that of the scenario in Figure
19. This same analysis can be conducted for the depolariz-
ing channels and measurements that use multiple depolarizing
channels.

Multiple Depolarizing Channels

Phase flips with multiple parameters have been covered and
the same will now be done for depolarizing channels. We
will first examine the scenario of a single particle undergoing
a depolarizing evolution. Schematically this can be seen in
Figure 27.

Phase Flip

Figure 27: Schematic of a single particle depolarizing channel evolu-
tion.

When the calculation is done the Quantum Fisher Information
of Figure 27 is

H =
r2

1− r2λ2
. (103)

Graphically the Quantum Fisher Information of Figure 27 can
be seen in Figure 28.

Figure 28: Quantum Fisher Information of a single particle depolariz-
ing channel evolution.

As the initial state of the particle becomes less noisy and
the λ value approaches 1, the Quantum Fisher Information of
the scenario in Figure 27 explodes towards infinity. We wish
to examine situations in which there are two particles and
depolarizing channels are being used.

The first scenario with multiple particles and depolarizing
channels that will be examined can be seen in the schematic
of Figure 29.
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ÛPrep

Depolarize λ

Figure 29: Schematic of two particle measurement where one particle
undergoes a depolarizing evolution with parameter λ.

When the Quantum Fisher Information is calculated for this
scenario it comes out to be

H =
r2(r2(1− 4λ) + r4λ+ 2)

(1 + 2rλ+ r2λ)(1− 2rλ+ r2λ)(1− r2λ)
. (104)

When comparing the result of the Quantum Fisher Informa-
tion in equation (104) to the result in equation (104), the gain
of the scenario in Figure 29 over Figure 27 is

G =
(r2λ2 − 1)(r4λ− 4r2λ+ r2 + 2)

(1 + 2rλ+ r2λ)(1− 2rλ+ r2λ)(r2λ− 1)
. (105)

We can graph this gain and it can be seen in Figure 30.

Figure 30: Graph of the gain for the scenario in Figure 29 over Figure
27.

When the scenario in Figure 29 is conducted it is always ad-
vantageous over the scenario in Figure 27. There are no values
for r and λ where the single channel is advantageous to that
over the double channel.

In this last scenario two particles undergo depolarization,
one with parameter λ and the other α. The schematic of this
measurement can be seen in Figure 31.

ÛPrep

Depolarize λ

Depolarize α

Figure 31: Schematic of two particle measurement where the first par-
ticle undergoes a depolarizing evolution with parameter λ and the second
particle undergoes a depolarizing evolution with parameter α.

The Quantum Fisher Information of the scenario in Figure 31
comes out to be

H =
r2α2(αλr4 − 4r2λα+ r2 + 2)

(1− r2λα)(1 + rα(r + 2)λ)(1 + rα(r − 2)λ)
. (106)

The gain equation for Figure 31 over Figure 27 comes out to
be

G =
α2(αλr4 − 4λr2α+ r2 + 2)2(r2λ2 − 1)

(λr2α− 1)(1 + rα(r + 2)λ)(1 + rα(r − 2)λ)
. (107)

The gain of Figure 31 over that of Figure 27 with r = 0.01
can be seen in Figure 32.

Figure 32: Gain of Figure 31 over Figure 27 with r = 0.01.

In this instance there is some gain for specific values of α and
λ for initial noisy states. The next scenario to examine is
when the initial states are pure (i.e r = 1.0). The gain of
Figure 31 over that of Figure 27 with pure initial states can
be seen in Figure 33.

Figure 33: Gain of Figure 31 over Figure 27 with r = 1.0.

The result of Figure 33 tells us that there are specific values
of α and λ that will produce a positive gain for that of Figure
31 over Figure 27. Otherwise it is advantageous to use the
scenario in Figure 27.
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Three Particle Phase Flip

We now move on to investigating phase flips with three
particles. The measurement that is being investigated can be
seen in Figure 34.

ÛPrep

Phase Flip λ

Phase Flip α

Phase Flip β

Figure 34: Phase flip measurement with a three particle system.

Figure 34 depicts a measurement where three particles are
subjected to a phase flip. Each phase flip is represented by
its own parameter where the parameter that we are trying to
estimate is λ. With this, the Quantum Fisher Information
comes out to be

H = r2(1− 2α)2(1− 2β)2·(
(r + 3)2(3r2 + 1)(η) + 3(1− r2)3(ξ)

(η)(ξ)

)
(108)

where η = (1−r2)2−γ2r2(1−r2)2, ξ = (3r2+1)2−r2(r+3)2γ2,
and γ = (1 − 2λ)(1 − 2α)(1 − 2β). We can continue to find
the gain of the scenario in Figure 34 over that of Figure 15
with parameter lambda. The gain equation is thus

G =
1− r2(1− 2λ)2(1− 2α)2(1− 2β)2

4
·(

(r + 3)2(3r2 + 1)(η) + 3(1− r2)3(ξ)

(η)(ξ)

)
. (109)

Because equation (109) has four variables in it we have to
limit two variables at a time when we observe the gains of
this scenario. The first scenario is when the initial state is
noisy (r = 0.01) and the α parameter is almost nonexistent
α = 0.01. The gain of this scenario can be seen in Figure 35.

Figure 35: Gain of Figure 34 over Figure 15 with r = 0.01 and α = 0.01.

It can be observed that Figure 35 indicates that the value
of λ is insignificant when calculating a gain. When β = 0.5

the gain in equation (109) is zero. The gain is symmetric for
values of β as β approaches zero or one. This indicates that
for specific values of β there is a gain for Figure 34 over Figure
15, and this can be seen visually in Figure 35.

We now move on to examining the gain when r = 0.01 and
β = 0.01. The gain for when the initial states are noisy and
β is almost nonexistent can be seen in Figure 36.

Figure 36: Gain of Figure 34 over Figure 15 with r = 0.01 and β = 0.01.

For this scenario the gain is zero when α = 0.5 and is once
again symmetric as α approaches one or zero. This graph once
again shows that there is a gain for Figure 34 over Figure 15
for specific values of α.

The last scenario for the three particle phase flip that will
be examined is when α = 0.01 and β = 0.01. With this, the
gain for this scenario can be seen in Figure 37.

Figure 37: Gain of Figure 34 over Figure 15 with α = 0.01 and β =
0.01.

The gain in Figure 37 is different from that of Figure 35 and
Figure 36. The purity of the initial state along with the value
of λ both have an impact for the gain of Figure 34 over Figure
15. When the initial states are pure the gain becomes zero,
regardless of the value for λ. When the initial states are noisy,
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there is always a gain for Figure 34 over Figure 15 when α =
0.01 and β = 0.01.

Conclusion

It has been observed that specific scenarios produce differ-
ent values for the Quantum Fisher Information and thus serve
as better or worse measurement procedures. When the initial
states are pure in a system the Quantum Fisher Information
of product and entangled states for phase shifts can be quanti-
fied as n and n2 respectively. Only when initial states are pure
is it more advantageous to use entangled states as measuring
devices.

In the presence of phase shifts, phase flips, bit flips, and
depolarization channels the Quantum Fisher Information of
each measurement procedure will be different dependent upon
initial conditions of the system. Phase flips tend to be less de-
structive when being used in measurements as compared to
that of depolarization channels. In some instances with depo-
larization channels it is more advantageous to use noisy states
than it is to use pure states. Whereas phase flips seem to be
more accurate measurement procedures when the parameter
is equal to one or zero.

In the example of a three particle measurement with three
phase flip channels the value of each parameter is very impor-
tant when it comes to calculating the Quantum Fisher Infor-
mation. When the gain is calculated over the simplest phase
flip scenario, if one parameter is small (parameter = 0.01) it
can be shown that the gain of the three particle scenario is
symmetric about the axis of another parameter (see Figures
35 and 36 for clarification). When the two parameters that
are not trying to be estimated and have equal values, the pu-
rity of the initial states play a significant role in calculating
the Quantum Fisher Information of a measurement.

Some scenarios have shown that it is more advantageous
to use the simplest possible scenario compared to others that
are more complicated. These revelations typically arise when
a parameter is set to either one or zero and the purity of the
state is either very low or exactly pure. The final conclu-
sion of the research conducted in this paper should suggest
that the Quantum Fisher Information of a measurement and
the viability of a measurement are largely dependent upon
the initial state of a system along with what is done with
each system. Ideally measurements are conducted with pure
states, but when noisy states are present, certain procedures
such as depolarizing channels have shown to be advantageous
in the pursuit of achieving precise measurements of physical
parameters.
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