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Abstract

The dynamics of two coupled pendulums is studied with the goal of solving for the equations of motion. The equations of
motion that were solved in this experiment were modeled with Lagrangian Mechanics. Numerical methods were used to solve the
equations of motion derived from Lagrangians in this experiment. The numerical solutions showed that the pendulums behaved
in the same manner as the data that was recorded. Both experimental data and the numerical solution show that the pendulums
eventually oscillate at the same frequency but out of phase of one another.

Background

Oscillations are defined to be the repetitive variation of some
measure of value about a central location [7]. Oscillations are
prominent in a lot of areas whether it by in Newtonian Me-
chanics involving pendulums or in circuits when talking about
alternating currents. Coupled oscillations occur when there are
multiple bodies contributing to the oscillations in a system.
Coupled oscillations can occur when there is a spring attached
between the two bodies of mass or something similar to it. In
the context of our experiment, we will have two pendulums
swinging from the same piece of support suspended from the
top of two thermoses which are free to move underneath.

Lagrangian Mechanics are valid for conservative systems only
[6]. Although our system is not conservative its dampening
over time is small enough to where we choose to neglect it.
Because of our assumption the use of Lagrangian Mechanics can
be used to model the motion of the coupled oscillator system
with respect to time. Lagrangian Mechanics allows us to use
a system’s kinetic and potential energies to derive equations of
motion for a given system. Formally, the Lagrangian is defined
as

L = T − U (1)

where T is the kinetic energy and U is the potential energy [6].
Once the the kinetic and potential energies of a system can be
written, the equations of motion can be solved with [6]

∂L

∂qi
− d

dt

(
∂L

∂q̇

)
= 0 (2)

where qi and q̇i are coordinates of a direction of motion in our
system. In our experiment there are three different coordinates

of motion x and ẋ, θ1 and θ̇1, and θ2 and θ̇2 where the x is the
horizontal position of one pendulum and θ1 and θ2 are the an-
gular positions of each pendulum. After the acceleration equa-
tions for our coupled oscillator system are known, the position
equations will be numerically solved and checked with recorded
data.

Experiment

The coupled oscillators were constructed using two rotary
motion sensors, a platform for the pendulums to be attached
to, and two thermoses for this platform to sit on. The set up
for this experiment can be seen in Figure 1.

Figure 1: A diagram of the coupled oscillators set up used in this
experiment. Coupling is provided by the stage that is free to move
back and forth on the thermoses.

Figure 1 gives a visual depiction of the constructed pendulum.
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The Lagrangian of the coupled oscillator is thus
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where ẋ and ẏ are the horizontal and vertical velocity for either
the stage, the thermoses, or each pendulum. The differences
between all these are subscripted. M is the mass of each pen-
dulum (they are the same mass), mT is the mass of one thermos,
I is the moment of inertia for one thermos in Figure 1. With
substitutions and geometric relationships equation (3) becomes
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now giving us the equation that is necessary to use for equation
(2). There are four coordinates (x1, x2, θ1, θ2) in equation
(4) that we will have to use equation (2) on. The equation of
motion for the x1 direction is

ẍ1 =
l(θ̇21 sin θ1 + θ̇22 sin θ2) +

1
2g(sin 2θ1 + sin 2θ2)

α− (cos2 θ1 + cos2 θ2)
(5)

where equation (5) is the acceleration equation in the x direc-
tion for one pendulum seen in Figure 1. Conversely the equation
of motion in the x direction for the other pendulum is

ẍ2 =
l(θ̇22 sin θ2 + θ̇21 sin θ1) +

1
2g(sin 2θ2 + sin 2θ1)

α− (cos2 θ1 + cos2 θ2)
. (6)

There is a common value that appears in equation (5) as well
as (6) and the rest of the equations of motion and that value is

α =
2(I/r2 +m)

m
+ms +

1

2
mt. (7)

The same procedure was conducted for the θ1 direction that
was used for the x1 and x2 coordinates

θ̈1 = (α− cos2 θ1)
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The same procedure is used to find the acceleration equation
for θ2 and is thus
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Equations (5), (6), (8), and (9) are second order ordinary cou-
pled nonlinear differential equations that require numerical so-
lutions due to their complexity. In particular, python and
ODEint were used to solve the equations of motion for our
system. Once equations (8) and (9) are solved numerically, we
can compare the predictions with data that was recorded from
the experiment. We wish to first report what the experimental
data was before we solve our equations of motion to predict the
motion of these pendulums.

Data and Discussion

The experimental data for the coupled oscillator when θ1 =
−0.136 rad and θ2 = 0.116 rad originally can be seen in Figure
2.
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Figure 2: The positions of the two pendulums seen in Figure 1 when
released from θ1 = −0.136 rad and θ2 = 0.116 rad.

The amplitude of the pendulums in Figure 2 damp out in the
two minute time period that these pendulums swing. As time
progresses, the amplitudes of the two pendulums eventually be-
come equal and out of phase. The goal with our numerical solu-
tions is to match the experimental data as well as possible and
that can be achieved by knowing the correct initial conditions
and all of the parameters in the experiment. The configura-
tion in Figure 2 occurred when θ1 = −0.136 rad and when
θ2 = 0.116 rad. Using the initial conditions of the pendulums
we have a solution for this specific condition as seen in Figure
3.
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Figure 3: The position vs. time plot for the θ1 and θ2 solutions
and data of each pendulum. As time progresses the two pendulums
swing at the same period but out of phase. This is reminiscent of
what we saw with data.

Figure 3 depicts our first scenario in which both pendulums
are being displaced from equilibrium. The next scenario occurs
when only one pendulum is being displaced from equilibrium
and the motion is subsequently different. This scenario occurs
when θ1 = −0.0434 rad and θ2 = 0.0378 rad for the initial
locations of the pendulums. The data that came from the ex-
periment of this can be seen in Figure 4.
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Figure 4: Pendulum position versus time for θ1 at equilibrium and
θ2 = 0.0378 rad initially.

The same behavior where the two pendulums oscillate out of
phase but at the same period occurs in Figure 4. This same
behavior should be observed for our solution of this system
for our solutions to be correct. The solution for when θ1 =
−0.0434 rad and θ2 = 0.0378 rad initially can be seen in Figure
5.
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Figure 5: The numerical solution for when θ1 = −0.0434 rad and
θ2 = 0.0378 rad initially.

It can be observed once again that the motion in Figure 5 of
these two pendulums eventually oscillate at the same period but
out of phase from one another. This was a common pattern no
matter the original displacement of the pendulums.

Conclusion

The equations of motion for a coupled pendulum system were
first modeled with Lagrangian Mechanics and later solved with
numerical methods in python. The behavior of the coupled
pendulum system was not unique for different initial conditions
from this experiment showing that no matter the initial dis-
placement of the pendulums the two pendulums would eventu-
ally oscillate at the same period out of phase. The data shows
that the amplitude of the oscillations eventually dampen to
where at some point in time the pendulums would remain sta-
tionary. On the contrary the numerical solutions do not show
any dampening in the oscillations and this is due to us assum-
ing that our system was conservative. In reality our system
had small dampening and thus that is why we neglected it in
our solution process. Comparing the data with the numerical
solutions shows that our solutions have behavior that is con-
sistent with what was observed with data even with neglecting
dampening in our solutions. Over time the solutions presented
with the numerical methods used to solve our equations of mo-
tion showed that the pendulums always eventually swung at
the same period or close to but out of phase of one another.
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